
J Optim Theory Appl (2008) 139: 17–33
DOI 10.1007/s10957-008-9423-1

Reduced Vertex Set Result for Interval Semidefinite
Optimization Problems

G. Calafiore · F. Dabbene

Published online: 26 April 2008
© Springer Science+Business Media, LLC 2008

Abstract In this paper we propose a reduced vertex result for the robust solution
of uncertain semidefinite optimization problems subject to interval uncertainty. If
the number of decision variables is m and the size of the coefficient matrices in the
linear matrix inequality constraints is n × n, a direct vertex approach would require
satisfaction of 2n(m+1)(n+1)/2 vertex constraints: a huge number, even for small values
of n and m. The conditions derived here are instead based on the introduction of m

slack variables and a subset of vertex coefficient matrices of cardinality 2n−1, thus
reducing the problem to a practically manageable size, at least for small n. A similar
size reduction is also obtained for a class of problems with affinely dependent interval
uncertainty.

Keywords Semidefinite optimization · Robustness · Linear matrix inequalities ·
Uncertainty

1 Introduction

Semidefinite convex optimization problems (SDPs) deal with the minimization of a
linear objective subject to a set of linear matrix inequality (LMI) constraints on the
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design variable x ∈ R
m and take the standard form

min c�x,

s.t. F (x) = F0 + ∑m
k=1 xkFk � 0,

where Fk , k = 0, . . . ,m, are symmetric matrices; see, e.g., [1]. Efficient polynomial-
time solution techniques exist for this class of problems, such as those based on
primal-dual interior-point methods, see [2–4].

In the last years, the consideration that most real-world problems unavoidably en-
tail a certain degree of uncertainty stimulated the research on robust solutions to un-
certain SDP problems, see, e.g., [5, 6]. In this setting, the problem data (F0, . . . ,Fk)
are assumed to be affected by bounded uncertainty, and a solution is said to be robust
if it is guaranteed to satisfy the constraints for all admissible uncertainty values.

Unfortunately, tractable necessary and sufficient conditions for the solution of ro-
bust SDP problems are available only for very special problem classes, while the
general situation is known to be NP-hard, see for instance [5–8]. Various relaxation
approaches have hence been proposed to conservatively solve these problems. In par-
ticular, in [6] the authors provide upper bounds on the optimal solution (i.e. the ob-
jective is minimized subject to sufficient conditions for robust satisfaction of the un-
certain LMIs) for the case when the uncertainty enters the data in a linear fractional
form, while in [9] the case of polytopic uncertainty is considered and a numerically
tractable relaxation of the problem is provided, together with an a-priori bound on
the degree of conservativeness of the approximation.

In this paper, we consider the case when the LMI coefficient matrices Fk , k =
0,1, . . . ,m, are symmetric interval matrices, that is, symmetric matrices whose en-
tries are bounded independently in given intervals. It is a well-known fact, easily
proven by convexity arguments, that in this case the uncertain LMI condition is ro-
bustly satisfied whenever it is satisfied for all the 2n(m+1)(n+1)/2 vertex matrices, that
is the matrices obtained by setting each matrix entry to its upper or lower limit, see
Sect. 2.1. However, recent results in the literature (see [10, 11] and the references
therein) suggest that the number of vertices can actually be reduced in certain spe-
cial classes of interval optimization problems. Motivated by these ideas, we develop
in Section 2 an equivalent formulation of a robust interval SDP which is based on
the introduction of m slack variables and requires satisfaction of only 2n−1 specially
selected vertex matrices. Although this result is still exponential in the matrix dimen-
sion n, the number of required vertex constraints can be manageable by currently
available solvers, for reasonable values of n. Exponential growth of the number of
vertices is not surprising and cannot be avoided in general (unless P = NP), since it
was already proven in [12] that even the simpler problem of checking robust posi-
tive semidefiniteness of a symmetric interval matrix is NP-hard. When even this re-
duced number of vertices would lead to a problem of unmanageable size, we show in
Sect. 2.3 that a specific SDP relaxation can be introduced, so that an upper bound on
the objective can be computed in polynomial time. As a by-product of our reduced
vertex set result, we also obtain that for a very specific class of uncertain SDPs,
namely linear programs (LP) affected by interval uncertainty, the robust optimization
problem can be recast exactly as a standard linear program with slack variables and
hence solved in polynomial time.
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Finally, in Sect. 3 we present a result that holds when the uncertainty affecting the
data is not completely independent, but it is instead represented by a linear transfor-
mation of a p×q interval matrix. In this case, a weaker result holds, which prescribes
to impose satisfaction of the LMI constraints at 2p+q−1 selected vertices.

1.1 Related Literature

The results of this paper are related to a classical work of Rohn [11] on interval
symmetric matrices and to a recent paper of Alamo et al. [10], which provides a new
and interesting vertex set result for a class of problems arising in a robust control
setting. In particular, our interest in the subject and the developments in this paper
have been directly inspired by the results in [10].

In details, in the work [11] a reduced vertex set result is provided for checking
negative-definiteness of a symmetric interval matrix. Specifically, Theorem 2 of [11]
states that a symmetric interval matrix of dimension n × n is robustly negative semi-
definite if and only if 2n−1 special vertex matrices are negative semidefinite. Notice
that the result of [11] is an analysis result, related to the problem of checking if a
property (negative semidefiniteness) holds robustly. Instead, the problem considered
in this paper is a design one, that is, the goal is to find a design vector x such that
an interval linear matrix inequality in x is robustly satisfied. It is thus interesting to
notice that the same vertex growth factor applies to both robustness analysis and de-
sign problems. The result of [11] is recovered in our framework as a special case for
m = 0 (no design variables).

The developments in Sect. 3 deal instead with a class of uncertain SDP problems
affected by affinely transformed interval uncertainty. Section 3 is closely related to
the work in [10]. In particular, in Remark 3.1 we show that, under the proposed
setting, the main vertex cardinality result in [10] can be re-derived and improved
by an halving factor.

1.2 Notations

For a vector x, the ith element is denoted by xi . The element in the ith row and
j th column of a matrix X is denoted either by [X]ij , or by Xij . For X ∈ R

n,m, the
notation X ≤ 0 (resp. X < 0) denotes elementwise nonstrict (resp. strict) inequality.
The notation |X| denotes a matrix whose (i, j)th element is |Xij |. S

n denotes the
subspace of symmetric n×n real matrices. For X ∈ S

n, the notation X � 0 (resp. X ≺
0) specifies that X is negative semidefinite (resp. negative definite). If X1, . . . ,Xk

are matrices, the notation diag(X1, . . . ,Xk) denotes a block-diagonal matrix having
X1, . . . ,Xk as diagonal blocks. If x ∈ R

n, the notation diag(x) denotes a diagonal
matrix with the elements of x on the diagonal. The operator � denotes the Hadamard
(entrywise) matrix product. The set of diagonal matrices of signs is defined as

Sn .= {diag(s1, . . . , sn) : si = ±1, i = 1, . . . , n}.

The cardinality of this set is card(Sn) = 2n.



20 J Optim Theory Appl (2008) 139: 17–33

2 Interval SDPs

Consider an uncertain linear matrix inequality restriction on the variables x1, . . . , xm,

F(x) = F0 +
m∑

k=1

xkFk � 0, (1)

where Fk ∈ S
n, k = 0,1, . . . ,m, are symmetric interval coefficient matrices. Namely,

we assume that

Fk = Fk(�k) = F̄k + �k, k = 0,1, . . . ,m,

where F̄k ∈ S
n are given and �k are only known to belong to the interval sets

Dk
.= {

� ∈ S
n : |�| ≤ Bk

}
,

where Bk ≥ 0 is a symmetric matrix containing the bounds on the entries of �.
A robust interval LMI is then defined as the following semi-infinite convex con-

straint

F0(�0) +
m∑

k=1

xkFk(�k) � 0, ∀�k ∈ Dk, k = 0,1, . . . ,m. (2)

In this paper, we treat the two robustness problems defined next.

Problem 2.1 (Robust Feasibility of Interval LMI) Given x ∈ R
m, check if (2) holds.

Problem 2.2 (Robust Solution of Interval SDP) Given c ∈ R
m, find x ∈ R

m such that
c�x is minimized subject to the constraints (2).

These interval problems found many applications in different fields, ranging from
numerical analysis and robust linear algebra to engineering design. As a simple mo-
tivating example, we next illustrate a problem arising in the context of topology opti-
mization and vibration control of discrete (or discretized) mechanical structures.

Example 2.1 (Truss Topology Optimization) A classical problem in structural design
is to determine the cross-sectional areas xi of a truss structure so to minimize the
total weight of the structure while guaranteeing a lower bound on the structure fun-
damental modal frequency. Formally, for a desired frequency � ≥ 0, one has to solve
an optimization problem of the form (see, e.g., [13, 14])

min
x

V (x), (3a)

s.t. xlb ≤ x ≤ xup, (3b)

M(x)�2 − K(x) � 0, (3c)

where the weight of the structure V (x) is a linear function of the design variable x,
the matrices K(x) and M(x) represent respectively the stiffness and the mass matrix
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of the structure, and constraint (3c) specifies that the fundamental modal frequency
should be higher than �. The vectors xlb, xub contain lower and upper bounds on the
cross-sectional areas, respectively. The mass and stiffness matrices are affine func-
tions of x, that is,

K(x) = K0 +
m∑

k=1

xkKk, M(x) = M0 +
m∑

k=1

xkMk,

where Mk,Kk , k = 0, . . . ,m, are symmetric matrices. Since these matrices depend
on geometric and material characteristics of the structure, it is natural to assume an
interval uncertainty over them, in which case

Kk = K̄k + �K
k , k = 0, . . . ,m,

Mk = M̄k + �M
k , k = 0, . . . ,m.

In this situation, the designer may be interested in determining a design that works
best in the worst-case scenario, that is in considering a robust version of problem (3).
It can be easily seen that the robust version of the constraint (3c) is readily rewritten
as an interval LMI of the form (2) by letting

F̄k = M̄k�
2 − K̄k, �k = �M

k �2 − �K
k , k = 0, . . . ,m.

2.1 Naive Vertex Solution Approach

We remark that there exist a straightforward (but computationally inefficient) way to
solve Problems 2.1 and 2.2. Indeed, it can be seen easily that every matrix in the set
Dk can be written as a convex combination of vertex matrices belonging to the set

Dv
k

.= {
� ∈ S

n : |�ij | = [Bk]ij , 1 ≤ i ≤ j ≤ n
}
,

which has cardinality 2n(n+1)/2. Then, the following lemma can be proved by ele-
mentary convexity arguments.

Lemma 2.1 The semi-infinite LMI constraint (2) is equivalent to the following finite
set of vertex LMI contraints

F0(�0) +
m∑

k=1

xkFk(�k) � 0, ∀�k ∈Dv
k , k = 0,1, . . . ,m. (4)

Problem 2.2 is thus equivalent to the SDP

min c�x,

s.t. (4).

In the latter minimization problem, the infinite number of constraints of Problem 2.2
has been replaced by a finite number of vertex constraints. Notice however that this
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number can be very large already for very small n and m. For instance, for n =
m = 3 the number of constraints is 16,777,216, and it becomes 1.1259 × 1015 for
n = m = 4. Hence, Lemma 2.1 has a theoretical interest, but it can rarely be applied
in practice. In the next section we derive a new result that shows how the number
of vertices can be drastically reduced and made independent of m, thus leading to a
more manageable solution approach.

2.2 A Result with Reduced Vertex Set

We first establish the following preliminary lemma, which is instrumental for proving
the main result.

Lemma 2.2 Given x ∈ R
m, the robustness condition (2) is satisfied if and only if

v�F̄ (x)v + |v|�B(|x|)|v| ≤ 0, ∀v ∈ R
n,

where we define

F̄ (x)
.= F̄0 +

m∑

k=1

xkF̄k, (5)

B(|x|) .= B0 +
m∑

k=1

|xk|Bk. (6)

Proof The proof of this result follows a reasoning similar to the one introduced in
[10] and [11]. The robust interval LMI (2) is satisfied if and only if

v�F0(�0)v +
m∑

k=1

xkv
�Fk(�k)v ≤ 0

holds for all �k ∈Dk and all v ∈ R
n, that is, if and only if

max
�0∈D0

v�F0(�0)v +
m∑

k=1

max
�k∈Dk

xkv
�Fk(�k)v ≤ 0, ∀v ∈ R

n.

Notice that

max
�0∈D0

v�F0(�0)v +
m∑

k=1

max
�k∈Dk

xkv
�Fk(�k)v

= v�F̄0v +
m∑

k=1

xkv
�F̄kv + max

�0∈D0

v��0v +
m∑

k=1

max
�k∈Dk

xkv
��kv

= v�F̄ (x)v + max
�0∈D0

v��0v +
m∑

k=1

max
�k∈Dk

xkv
��kv. (7)
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Considering the second term in the previous summation, we have that

max
�0∈D0

v��0v = max
�0∈D0

(
n∑

i=1

v2
i [�0]ii + 2

∑

1≤i≤j≤n

vivj [�0]ij
)

.

The maximum in this expression is attained by choosing

[�0]ii = [B0]ii and [�0]ij = sign(vivj )[B0]ij ,
which yields

max
�0∈D0

v��0v =
n∑

i=1

v2
i [B0]ii + 2

∑

1≤i≤j≤n

|vivj |[B0]ij = |v|�B0|v|.

Similarly, considering the third term in (7), we have

max
�k∈Dk

xkv
��kv = max

�k∈Dk

(
n∑

i=1

xkv
2
i [�k]ii + 2

∑

1≤i≤j≤n

xkvivj [�k]ij
)

.

For given xk , the maximum in this expression is attained by choosing

[�k]ii = sign(xk)[Bk]ii and [�k]ij = sign(xkvivj )[Bk]ij ,
yielding

max
�k∈Dk

xk v��kv =
n∑

i=1

|xk|v2
i [Bk]ii + 2

∑

1≤i≤j≤n

|xk||vivj |[Bk]ij = |xk||v|�Bk|v|,

thus concluding the proof. �

We are now in position to state the following corollary, which provides a reduced
vertex set solution for Problem 2.1.

Corollary 2.1 (Robust Feasibility with Reduced Vertex Set) Given x ∈ R
m, the semi-

infinite condition (2) is satisfied if and only if

F̄ (x) + SB(|x|)S � 0, S = diag(1, S̃), ∀S̃ ∈ Sn−1, (8)

where F̄ (x) and B(|x|) are defined in (5), (6) and Sn−1 is the set of (n− 1)× (n− 1)

diagonal matrices of signs. Condition (8) consists of a finite number 2n−1 of vertex
conditions.

Proof Suppose first that (2) holds, that is,

F̄ (x) + �0 +
m∑

k=1

xk�k � 0, ∀�k ∈ Dk, k = 0,1, . . . ,m.
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Then in particular, for any S̃ ∈ Sn−1, let S = diag(1, S̃) and choose

�̄0 = SB0S ∈D0,

�̄k = sign(xk)SBkS ∈Dk, k = 1, . . . ,m.

Then, it must hold that

F̄ (x) + SB0S +
m∑

k=1

|xk|SBkS � 0,

which proves the first implication.
Conversely, suppose that (8) holds, and notice that SB(|x|)S = (−S)B(|x|)(−S).

This implies that the condition in (8) actually holds for all S ∈ Sn. Therefore, for all
v ∈ R

n, it holds that

v�F̄ (x)v + v�SB(|x|)Sv ≤ 0, ∀S ∈ Sn.

Hence, choosing S = diag(sign(v1), . . . , sign(vn)), it must hold that

v�F̄ (x)v + |v|�B(|x|)|v| ≤ 0, ∀v ∈ R
n.

By Lemma 2.2, this latter condition implies satisfaction of (2), thus concluding the
proof. �

The result given in Corollary 2.1 is useful for robustness analysis (Problem 2.1).
Notice that in the special case of m = 0 (no design variables) the vertex matrices
in (8) coincide with those required in Theorem 2 of [11] for checking negative-
semidefiniteness of symmetric interval matrices.

We next state the main result of the paper, which provides a reduced vertex set
condition for the solution of the robust design problem (Problem 2.2).

Theorem 2.1 (Robust Optimization with Reduced Vertex Set) The robust interval
SDP problem (Problem 2.2) is equivalent to the following SDP in the variables x, ξ ∈
R

m

min c�x, (9a)

s.t. F̄ (x) + SB(ξ)S � 0, S = diag(1, S̃), ∀S̃ ∈ Sn−1, (9b)

xk ≤ ξk, k = 1, . . . ,m, (9c)

−xk ≤ ξk, k = 1, . . . ,m, (9d)

where

B(ξ) = B0 +
m∑

k=1

ξkBk. (10)
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Proof We show that the robust LMI conditions (2) and (9b)–(9d) are equivalent. Sup-
pose first that (2) holds for some x ∈ R

m. Then, (8) holds by Corollary 2.1, hence
(9b)–(9d) hold by taking ξk = |xk|.

Conversely, suppose that (9b)–(9d) hold, and notice that (9c), (9d) imply |xk| ≤ ξk .
Since SB(ξ)S = (−S)B(ξ)(−S), condition (9b) implies that F̄ (x)+SB(ξ)S � 0 for
all S ∈ Sn. Hence, for all S ∈ Sn,

v�F̄ (x)v + v�SB0Sv +
m∑

k=1

ξkv
�SBkSv ≤ 0, ∀v ∈ R

n.

In particular, for S = diag(sign(v1), . . . , sign(vn)), we have

v�F̄ (x)v + |v|�B0|v| +
m∑

k=1

ξk|v|�Bk|v| ≤ 0, ∀v ∈ R
n.

Now, since Bk ≥ 0, then |v|�Bk|v| ≥ 0. Therefore |xk| ≤ ξk implies that
ξk|v|�Bk|v| ≥ |xk||v|�Bk|v|; thus, for all v ∈ R

n,

v�F̄ (x)v + |v|�B0|v| +
m∑

k=1

|xk||v|�Bk|v|

≤ v�F̄ (x)v + |v|�B0|v| +
m∑

k=1

ξk|v|�Bk|v| ≤ 0.

This implies satisfaction of (2), by Lemma 2.2, which concludes the proof. �

Remark 2.1 (Vertex Complexity) Theorem 2.1 shows that the infinite set of con-
straints in Problem 2.2 can be substituted by an equivalent finite set of 2n−1 vertex
LMIs. The number of vertices is thus independent of m and it is drastically reduced
with respect to the case considered in Sect. 2.1.

Looking more closely to condition (9b) in Theorem 2.1, we see that when B(ξ) and S

commute (i.e. when B(ξ) is diagonal) then, since SS = I , (9b) reduces to the single
LMI constraint F̄ (x) + B(ξ) � 0. This situation happens for instance in the special
case of interval linear programs, which is illustrated in the next example.

Example 2.2 (Special Case: Interval Linear Programs) Consider a standard linear
programming problem (LP),

min c�x,

s.t. Ax − b ≤ 0,

with A ∈ R
n,m and b ∈ R

n. It is straightforward to verify that the linear constraints in
this problem can be cast in an equivalent LMI format (1) by taking

F0 = diag(−b), Fk = diag(ak), k = 1, . . . ,m,



26 J Optim Theory Appl (2008) 139: 17–33

where ak denotes the kth column of A. Now, if the entries of A and b are assumed to
lie in independent intervals, we may write

A = A(�) = Ā + � � R, b = b(δ) = b̄ + δ � d,

where Ā ∈ R
n,m, b̄ ∈ R

n are the nominal matrices, R ∈ R
n,m, d ∈ R

n are given pos-
itive matrices containing the interval limits, and � ∈ R

n,m, δ ∈ R
n are the uncertain-

ties, which are subject to |�| ≤ 1, |δ| ≤ 1. The robust interval LP problem

min c�x, (11a)

s.t. A(�)x − b(δ) ≤ 0, ∀�,δ : |�| ≤ 1, |δ| ≤ 1, (11b)

can therefore be equivalently rewritten in the format of a robust interval SDP, with
diagonal nominal coefficient matrices F̄0 = diag(−b̄), F̄k = diag(āk) and diagonal
bound matrices B0 = diag(d), Bk = diag(rk), k = 1, . . . ,m, where āk , rk are the kth
column of Ā and of R, respectively.

Let us now apply Theorem 2.1 to this interval SDP. Since S ∈ Sn and Bi are
diagonal and SS = I , the S terms disappear in equation (9b). It follows that problem
(11b) is equivalent to

min c�x,

s.t. F̄0 + ∑m
k=1 xkF̄k + B(ξ) � 0,

xk ≤ ξk, k = 1, . . . ,m,

−xk ≤ ξk, k = 1, . . . ,m,

where ξ� = [ξ1 · · · ξm] is a vector of slack variables. Converting this diagonally
structured SDP back to standard LP format, we finally obtain that (11b) is equiva-
lent to the following standard linear program in the variables x and ξ :

min c�x,

s.t. Āx − b + Rξ + d ≤ 0,

xk ≤ ξk, k = 1, . . . ,m,

−xk ≤ ξk, k = 1, . . . ,m.

This result, which could also be obtained via a simpler and more direct approach, is
of independent interest and it improves upon a previous solution approach recently
proposed in [15], which required exponential enumeration. Robust linear programs
with more general uncertainty structures are studied in [16].

2.3 Polynomial-Time Solvable SDP Relaxation

Although Theorem 2.1 entails a reduced set of vertex constraints, the number of such
constraints still grows exponentially, and may happen to be too large for a practical
solution. For these cases, we here propose a relaxation of the problem based on a
sufficient LMI condition that guarantees the satisfaction of (2).
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Corollary 2.2 There exists x ∈ R
m that satisfies the robust interval LMI condi-

tion (2), if there exist x ∈ R
m and slack variables ξ ∈ R

m, t ∈ R
n such that

F̄ (x) + T � 0, (12a)

B(ξ) � T , (12b)

xk ≤ ξk, k = 1, . . . ,m, (12c)

−xk ≤ ξk, k = 1, . . . ,m, (12d)

where T = diag(t) and F̄ (x), B(ξ) are defined in (5) and (10), respectively. An upper
bound for the optimal value of Problem 2.2 is hence obtained by minimizing c�x

subject to the LMI constraints (12).

Proof If (12b) holds, then for any S ∈ Sn it holds that

SB(ξ)S � ST S ≡ T ;
therefore, adding F̄ (x) to both sides of this inequality we obtain that

F̄ (x) + SB(ξ)S � F̄ (x) + T .

This inequality shows that (12a) implies (9b) in Theorem 2.1, thus concluding the
proof. �

3 SPDs with Linearly Transformed Interval Uncertainty

The main result treated in Sect. 2.2 refers to the situation when all entries of the LMI
coefficient matrices are affected by independent interval uncertainty. In some specific
applications, such as robust control, interval LMIs arise where the uncertainties are
not independent. However, reduced vertex set results can be obtained also in these
cases, as recently shown in [10].

Here we examine one of such non-independent uncertainty situations, where the
LMI constraints are additively perturbed by a linear function of an interval matrix �.
Namely, we consider the uncertain LMI constraint

F(x) = F̄ (x) + L�R(x) + R�(x)��L� � 0, (13)

where F̄ (x) is an n × n symmetric affine matrix function of x ∈ R
m, R(x) is a q × n

affine matrix function of x, L ∈ R
n,p is a given matrix, and � is a p × q interval

matrix, i.e. � ∈Dp,q , where

Dp,q .= {� ∈ R
p,q : |�| ≤ B},

with B ∈ R
p,q a given nonnegative matrix representing the entrywise bounds on the

absolute values of the elements of �.
The uncertain LMI representation (13) is a special case of the classical linear frac-

tional transformation (LFT; see, e.g., Sect. 2.2 of [6]), which frequently arises in
robust control applications, see for instance [17, 18]. The following theorem holds.
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Theorem 3.1 A vector x ∈ R
m satisfies the robust LMI condition

F̄ (x) + L�R(x) + R�(x)��L� � 0, ∀� ∈Dp,q, (14)

if and only if it satisfies

F̄ (x) + LSLBSRR(x) + R�(x)SRB�SLL� � 0, (15a)

SL = diag(1, S̃L), ∀S̃L ∈ Sp−1, ∀SR ∈ Sq . (15b)

Condition (15) consists of a finite number 2p+q−1 of vertex LMI constraints.

Proof The proof follows a reasoning similar to the one developed for the results in
Sect. 2.2. Notice preliminarily that a vector x ∈ R

m satisfies (14) if and only if

v�F̄ (x)v + 2 max
�∈Dp,q

v�L�R(x)v ≤ 0, ∀v ∈ R
n. (16)

Let z� .= v�L ∈ R
1,p , y(x)

.= R(x)v ∈ R
q,1; then,

max
�∈Dp,q

v�L�R(x)v = max
�∈Dp,q

z��y(x) = max
�∈Dp,q

p∑

i=1

q∑

j=1

�ij ziyj (x)

[since the max is attained for �ij = Bij sign(ziyj (x))]

=
p∑

i=1

q∑

j=1

Bij |ziyj (x)| =
p∑

i=1

q∑

j=1

|zi |Bij |yj (x)|

= |z|�B|y(x)| = |v�L|B|R(x)v|.
From (16), we thus have the following preliminary result: (14) holds if and only if

v�F̄ (x)v + |v�L|B|R(x)v| + |R(x)v|�B�|v�L|� ≤ 0, ∀v ∈ R
n. (17)

Now, suppose first that (14) holds. Then, for any SL ∈ Sp and any SR ∈ Sq , since
� = SLBSR ∈ Dp,q , we see immediately that (15) is satisfied.

Conversely, suppose (15) holds, and notice that whenever (15) is satisfied for a
pair (SL,SR) it is also satisfied for the pair (−SL,−SR). This implies that, despite
the restriction on the sign of the first diagonal element in SL, (15) actually holds for
all SL ∈ Sp and for all SR ∈ Sq . Therefore, for all v ∈ R

n, it holds that

v�F̄ (x)v + v�LSLBSRR(x)v + v�R�(x)SRB�SLL�v ≤ 0,

∀SL ∈ Sp, ∀SR ∈ Sq .

In particular, by choosing

SL = diag(sign([v�L]1), . . . , sign([v�L]p)),

SR = diag(sign([R(x)v]1), . . . , sign([R(x)v]q)),
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we have that, for all v ∈ R
n, it must hold that

v�F̄ (x)v + |v�L|B|R(x)v| + |R(x)v|�B�|v�L|� ≤ 0,

which is (17). Since we proved in the preliminary result that (17) is equivalent to (14),
we concluded our proof. �

Remark 3.1 Theorem 3.1 and its proof are closely related to the main result of [10].
In particular, the authors of [10] consider a problem arising in a robust control setting
which, restated in the notation of this paper, takes the following form:

F̄ (x) + �a + ��
a + �bQ(x) + Q�(x)�b � 0, ∀�a ∈Dn,n, �b ∈ Dn,m. (18)

It is proved in [10] that this condition is equivalent to 2m+n conditions on specific
vertex matrices. We next show that (18) is a special case of LMI (14), and that The-
orem 3.1 can be modified and specialized to this case, thus providing a vertex cardi-
nality result that improves by an halving factor the 2m+n vertex set cardinality result
of [10]. To this end, notice that (18) can be written in the form (14), by taking

� = [�a �b] ∈ R
n,n+m, L = In, R�(x) = [

In Q�(x)
]
.

Then, it can be easily verified that all steps in the proof of Theorem 3.1 would go
through with SL = diag(1, S̃L), S̃L ∈ Sn−1, and with SR taking the specific block
structure SR = diag(SL,SQ), with SQ ∈ Sm. The resulting condition of type (15)
would thus involve only 2m+n−1 vertex constraints,

F̄ (x) + SLBaSL + SLBbSQQ(x) � 0, SL = diag(1, S̃L), ∀S̃L ∈ Sn−1, SQ ∈ Sm,

where [Ba Bb] is the matrix of bounds for the interval matrix � = [�a �b].

Finally, we provide a result which is the analog of Theorem 3 in [10]. This result
gives an efficiently computable sufficient condition for the satisfaction of (14) and it
is reported in Corollary 3.1 with an alternative proof.

Corollary 3.1 If x ∈ R
m, � = diag(θ1, . . . , θq) � 0, T = diag(t1, . . . , tp) satisfy the

LMIs
[

F̄ (x) + LT L� R�(x)

R(x) −�

]

� 0, (19a)

B�B� � T (19b)

then x satisfies (14).

Proof Let S̄q .= {diag(s1, . . . , sq) : |si | ≤ 1, i = 1, . . . , q}. Obviously, we have that
Sq ⊂ S̄q ; hence,

F̄ (x) + LSLBSRR(x) + R�(x)SRB�SLL� � 0, ∀SL ∈ Sp, ∀SR ∈ S̄q, (20)
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implies that (15) is satisfied. In turn, applying the relaxation result in Lemma 3.2 of
[6], we have that (20) is satisfied if there exists a diagonal matrix of positive scalings
� = diag(θ1, . . . , θq) � 0 such that

[
F̄ (x) + LSLB�B�SLL� R�(x)

R�(x) −�

]

� 0, ∀SL ∈ Sp. (21)

Now let T = diag(t1, . . . , tp) be such that B�B� � T . This implies that, for any SL ∈
Sp , SLB�B�SL � SLT SL ≡ T , and, by congruence, LSLB�B�SLL� � LT L�,
for all SL ∈ Sp . Substituting the second term in the sum in the (1,1) block of the
LMI (21) with the majorizing term LT L�, we prove that (19) imply (15). The claim
hence follows by application of Theorem 3.1. �

4 Numerical Example

We revisit a problem originally considered in [19], dealing with the minimization of
the largest eigenvalue of an affine combination of symmetric matrices. Namely, in
[19], the following problem is considered:

min
x∈R5

λmax

(

Ā0 +
5∑

i=1

xiĀi

)

, (22)

where λmax denotes the largest eigenvalue of a symmetric matrix and Ā0, . . . , Ā5 are
the following symmetric matrices:

Ā0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.69 −0.32 0.34 0.43 −0.05

−0.32 −0.11 −0.11 −0.45 −0.34

0.34 −0.11 −0.71 −0.33 −0.08

0.43 −0.45 −0.33 0.65 0.27

−0.05 −0.34 −0.08 0.27 0.39

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ā1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.66 0.31 0.57 −0.06 −0.44

0.31 −0.23 −0.12 −0.35 0.28

0.57 −0.12 −0.26 −0.06 −0.37

−0.06 −0.35 −0.06 0.64 0.34

−0.44 0.28 −0.37 0.34 0.61

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ā2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.31 0.35 0.06 −0.23 0.17

0.35 0.24 −0.19 0.21 −0.12

0.06 −0.19 −0.34 0.00 −0.36

−0.23 0.21 0.00 0.16 −0.24

0.17 −0.12 −0.36 −0.24 0.00

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Ā3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.27 −0.14 0.13 −0.32 −0.08

−0.14 −0.20 −0.29 −0.05 −0.64

0.13 −0.29 −0.45 −0.20 −0.59

−0.32 −0.05 −0.20 −0.27 −0.46

−0.08 −0.64 −0.59 −0.46 −0.39

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ā4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.57 −0.38 −0.09 0.31 0.22

−0.38 0.66 0.17 −0.03 0.51

−0.09 0.17 0.23 0.12 −0.21

0.31 −0.03 0.12 −0.56 −0.21

0.22 0.51 −0.21 −0.21 0.59

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ā5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.22 0.28 0.14 0.03 0.09

0.28 0.69 −0.12 0.10 0.30

0.14 −0.12 −0.77 −0.21 0.13

0.03 0.10 −0.21 −0.42 −0.15

0.09 0.30 0.13 −0.15 0.22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Problem (22) can be recast in SDP form as

minx∈R5,λ∈R λ,

s.t. Ā0 + ∑5
i=1 xiĀi − λI � 0,

which has the optimal solution λmin = 0.70888.
Assume now that the matrices Ā1, . . . , Ā5 represent nominal values, while the

actual entries are only known to lie in independent intervals centered around the
nominal values, with width equal to ρ percent of the nominal, that is,

Ak = Āk + �k, |�k| ≤ ρ|Āk|; k = 1, . . . ,5.

In this situation, the problem becomes that of minimizing the worst-case largest
eigenvalue of the interval matrix family, that is,

minx∈R5,λ∈R λ,

s.t. Ā0 + ∑5
i=1 xiĀi + ∑5

i=1 xi�i − λI � 0,

∀|�k| ≤ ρ|Āk|, k = 1, . . . ,5.

This problem is an interval SDP of the form (2).
Determining a robust solution for this interval SDP using a naive vertex approach

would require considering 250 ≈ 1015 vertices. Application of Theorem 2.1 requires
instead only 16 vertices. Hence, solving this problem for increasing values of ρ rang-
ing in the interval [0,1] (which corresponds to uncertainty level from 0% to 100%),
we obtained the plot shown in Fig. 1. This numerical example was coded in Matlab
using the YALMIP interface (see [20]) and the SeDuMi SDP solver. The numerical



32 J Optim Theory Appl (2008) 139: 17–33

Fig. 1 Plot of the worst-case
largest eigenvalue λmax as a
function of ρ

solution of the problem for each fixed value of ρ required about 0.13 seconds on an
AMD Dual Opteron workstation.

5 Conclusions

Robust solutions to uncertain SDP problems with interval coefficient matrices require
considering an exponential number of vertex constraints. We have shown in this paper
that when all entries of the LMI coefficient matrices lie in independent intervals, the
number of vertices to be considered in the optimization is 2n−1, being n the size
of the LMI. Interval linear programs are a special case of the considered class of
problems, and can be solved efficiently without resorting to vertexization. When the
LMI constraint is expressed as a linear transformation of a p × q matrix of uncertain
coefficients, the required number of vertices becomes 2p+q−1.
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